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In this paper we look for periodic solutions, with prescribed energy

h e R, of Hamilton's equations:

X= - x(x,p), =-(xp)

is assumed that the Hamiltonian H is convex on Rx R, and

that the origin (0,0) is an isolated equilibrium. It is also assumed

that some ball B around the origin can be found such that the energy

surface H (h) lies outside B but inside v2 B. Under these assump-
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tions, we prove that there are at least n distinct periodic orbits of

the Hamiltonian flow (H) with energy level h.

A S (MOS) Subject Classifications - 34C25, 49A10, 58F05, 70H05,

70H25, 70K99

Key Words - Hamiltonian, periodic solutions

Work Unit Number 1 - Applied Analysis

Centre de Recherches de Mathematiques de la Decision,

Universite Paris-Dauphine, 75775 Paris Cedex 16

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.



SIGNIFICANCE AND EXPLANATION

Hamilton's equations are the fundamental equations of mechanics. They

describe the behaviour of a physical system which does not interact with

other systems, so that its total energy (= kinetic energy + potential energy)

is constant throughout time. Periodic solutions of these equations corres-

pond to vibrations of the system, which then goes through the same motions

at regular intervals.

Finding such vibrations is very easy for linear systems, and very dif-

ficult for nonlinear systems. The only thing one could do in the nonlinear

case up to very recently was to linearize the system near an equilibrium;

this is the so-called theory of small oscillations which is a part of every

course in classical mechanics, and which is crucial to the study of the

stability of equilibria.

This paper proves that for a nonlinear Hamiltonian system with n

degrees of freedom there are at least n different modes of vibration on

each prescribed energy level. It is the first result of this kind, since

the energy level, i.e. the oscillations, are not required to be small.

The corresponding result for small oscillations due to A. M. Liapunov has

been known for nearly one hundred years. ACCESSION for
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ON THE NUMBER OF PERIODIC TRAJECTORIES FOR A

HAMILTONIAN FLOW ON A CONVEX ENERGY SURFACE

Ivar Ekeland* and Jean-Michel Lasry*

I. INTRODUCTION.

The evolution of many conservative systems in mechanics or physics can be

described by Hamilton's equations:

)i 
=  -- i(x,p), 1 < i < naP i

(H) 3H
P, - -7 (x, p), < i < n

Here (x,p) e n x 3n , the so called phase space, and n is the number of degrees

of freedom. The first n components x (xl,...,x n ) represent position variables,

and the n last ones p = (pl ... 'Pn) momentum variables. The function

H : 3n n -R, the Hamiltonian, represents the energy of the system. Indeed, it

is an immediate consequence of equation (H) that H is an integral of motion, i.e.

H(x(t),p(t)) is constant along any solution of (H).

Equations (H) can be written in a more concise way. Introduce the phase variable

u = (x,p) in IR2 n and the symplectic linear map a of P2n into itself:

(i) au = a(x,p) = (p,-x)

We denote by H' the euclidian gradient of H. Equations (1) now become:

(H) = oH' u)

In this paper, we are interested in periodic solutions of equation (H). We will

assume that the origin is an equilibrium, i.e. H' (0) = 0, so that equation (H) has

the constant (and hence periodic) solution u(t) = 0 for all t. The problem then is to

find non-constant periodic solutions. It can be tackled from two directions. One can

either prescribe the period T or the energy level h.

*Centre de Recherches de Mathematiques de la Decision,

Universite Paris-Dauphine, 75775 Paris Cedex 16
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For the fixed-period problem, we refer the reader to the recent papers of

Rabinowitz ([19], [20]), Clarke-Ekeland ([6]) and Ekeland ([7]). We simply mention

that these papers prove the existence, for each T > 0, of some non-constant T-periodic

solution of (H), under various assumptions on the shape and growth of H.

We will be dealing with the fixed-energy problem. It goes back to Liapunov, who

encountered it in his study of equilibrium stability. From now on, we scale the

Hamiltonian by setting H(0) = 0. We shall consider trajectories of equation (H) rather

than solutions: if u(t) is a solution of (H), a translation in time, v(t) = u(t + 0),

yields a different solution but the same trajectory.

Liapunov ([14]) and Horn ([12]) have shown that, if H is analytic, and the matrix

of second derivatives H"(0) is non-resonant (*), then there is some C > 0 such

that, for all h # 0 within the range - there are at least n distinct

periodic trajectories with energy level h. In a celebrated paper, Weinstein ([24];

see also Moser, [16]) has proved the same result, assuming only that H is C
2 

and

H"(0) is positive definite.

All these results are local, holding only in an unspecified neighbourhood of the

origin, and so the question arises whether there is a global version, valid for any

12h > 0. Successively Seifert ([231) for split Hamiltonians, H(x,p) = p + V(x)

22
with V"(x) positive definite, Weinstein ([251) for C strictly convex Hamiltonians,

Clarke ([5]) for general convex Hamiltonians, have proved the existence of at least one

periodic trajectory for each energy level h > 0. Rabinowitz, however, has a result

which goes beyond convex Hamiltonians ([19]; [20]). He has also shown how to deduce

the fixed-energy case from the fixed-period case.

The basic result of this paper (theorem IV.l) is that, if H is convex and

satisfies the uniform estimate

22

au 2 H(u) " 2au
2 

Vu # 0

(*) the eigenvalues + iwi,... + iwn of the matrix -H"(n) are purely imaginary,

and no quotient wi/w., i I j, is an integer.

-2-



for some a > 0, then there are at least n distinct periodic orbits on each energy

level h > 0. This theorem, and its corollaries, constitute a first step towards a

global version of Weinstein's theorem.

'The proof uses the Legendre transform G of H with respect t the variable

u = (x,p). Performing such a transformation with respect to the variable p alone

is classical: this is how one reverts to the Lagrangian from the Hamiltonian

formulation. However, performing this transformation with respect to both variables

together is a new idea. It was introduced by Aubin-Ekeland ([i]) in another context,

and by Clarke ([5]) who used it to find periodic solutions. His method was developed

in the papers [6] and [71 where it is shown that the classical principle of least action:

T

(8) extremize f [pk - H(x,p)ldt~0

has a dual formulation:

T
(9) extremize I [G(-q,y) - yqjdt

0

Prescribing suitable boundary conditions, one gets two problems in the calculus of

variations which are equivalent: there are explicit formulas which transform an

extremal of one problem into an extremal of the other. For instance, in the case when

one looks for T-periodic solutions of equation (H), the appropriate boundary conditions
T T

are I u(t)dt = 0 for the first problem, and f v(t)dt = 0 for the second, with
0 0

v = (y,q).

From a technical point of view, it is better to change the time scale, so as to

deal always with the interval (0,I). We will work in the Hilbert space E of all

functions v (y,u) such that:

1 1
(10) v L 2(0,1;Rn), f (t)dt = 0 = f v(t)dt

0 0

on which we define the functionals J and K by:

i

(11) J(v) = f -y(t)q(t)dt

0

-3-



1

(12) K(v) = f G(-A(t),(t))dt
0

The functional IT used in the papers [6] and [7] to find T-periodic solutions is

K + TJ. Critical points of IT yield, after rescaling time, T-periodic solutions of

equations (H). In this paper, where the period T is no longer prescribed but the

energy level h is, we begin by studying the particular case where the Hamiltonian H

is positively homogeneous of degree two. This analysis is carried out in Section II.

The peculiarity of the homogeneous case is that, if u is a solution of (H), then so

is Xu for any X > 0, so that any particular energy level can be reached simply by

rescaling. We therefore use a functional where neither the prescribed energy level

nor the period appear explicitly, namely:

(13) I = J + (K + a)K

Here a > 0 is an ad hoc constant. The choice of this functional is partly

arbitrary, and partly supported by heuristic reasons which we now develop.

Let us figure out the behaviour of the functional I. Note first that is the sum

of the quadratic form J, which is neither positive nor negative, and the convex

functional (a + K)K, which may well be non-differentiable. So I itself is neither

convex nor differentiable.

The behaviour near zero or infinity is easily investigated. At infinity, the

fourth-order term K2 takes precedence over the second-order terms J and aK, so

that x(v)/IjvI - +- when lvji - =. Near the origin, on the other hand, the second-

order terms take precedence, so that the functional I behaves like J + aK: this is

a linear combination of J and K, similar to the one we used in the fixed-period

problem. Finally, the critical points of I (assuming for the moment that K is

differentiable) are giver by:

(14) V =J' + (a + 2K)K' = 0.

Setting (a + 2K) = T , we rewrite this equation as K' + TJ = 0. This is just

IT  0, which has been seen to give T-periodic solutions of equation (H). Summing up,

the critical points of I, i.e. equation (14), give rise to periodic solutions of the

-4-



Hamiltonian system, and what we have to show is that this procedure does indeed yield

n distinct periodic trajectories with a given energy level.

This is where we want to stress the difference between periodic trajectories, which

are closed curves in 2n, and periodic solutions, which are mappings from S1 = ]R/Z

2ninto 2 . What a critical point of I gives us is some number T > 0 and some

1-periodic function u(t) such that:

1.
(15) T = H'(u)

so that t - u() is a T-periodic solution of equation (H). But two different solu-

tions (TIu I ) and (T2 ,u2 ) can in fact describe the same periodic trajectory:

- either because T, = kIT, T2 = k 2 T, ul(t ) = U(k1 t), u2 (t) = u(k2 t), with k

and k2  integers, not both equal to 1. In this case, the points u (t), u 2(t) and

u (t) run along the same closed curve in 2n, with u. (t) doing k. revolutions
2 .

(i = 1,2) while u(t) does only one.

- or because T1 = T and u (t) = u 2 (t + e), with e 31 0 modulo 1. In this

case, the points u (t) and u 2(t) run after each other on the same curve with a

fixed time lag.

In other words, we first have to eliminate from consideration the critical points

of I which will lead to pairs (T,u) where T is not the true minimal period of

u. This is done in Section II by restricting ourselves to the subset Q of E where

I 1 0. This is where the particular choice of the constant a > 0 in formula (13)

comes in. If it is small enough, the subset Q will not be empty. If it is large

enough, every u c Q will have 1 as its minimal period. That a can be chosen just

right follows from the estimates (2).

We next have to take into account the action of the group S ; this means we have

to identify functions u e E which differ only by a translation in time. This is done

in Section III, where we show how this group action can actually be turned to our

advantage. Indeed, the very existence of this group action, and the fact that it

leaves the functional I invariant, put strong constraints on the topological

-5-



situation, which enables us to show that I has at least n distinct families of

critical points, defining distinct trajectories of (H) on the prescribed energy level.

The result is stated in Section III as an abstract theorem on critical points of

functionals on Hilbert space which are invariant by an Sl-action. The result is first

proved in the case where the functional is CI , along classical lines: it is essen-

tially the proof Clark (141) gave for even functions ( 2-action), where we replace

the notion of genus by the index theory of Fadell-Rabinowitz ([11]). The case where

the functional split as the sum of two terms, a smooth one and a convex one, then

follows by a regularization procedure, which is ai) earlier work by the second author, we

construct a new functional, which has the same critical points as the original one, but

which is C1 and falls within the range of the earlier result. This abstract theorem

will apply to the functional I defined by (13), without any smoothness assumption on

G.

The proof then is complete for the case when the Hamiltonian H, and its Legendre

transform G, are positively homogeneous of degree two. In the last section, IV, we

show how to infer the general case from this particular one. This is done by using a

trick, which we learned from Rabinowitz, although it seems to be well-known among

specialists. Finally, we compare our result to Weinstein's theorem, to grasp the

meaning of condition (2) and give food for future thought.

The reader who wants to avoid convex analysis may read this paper under the added

2assumption that the Hamiltonian H is C , with H"(u) positive definite, uniformly
2n

for u 2

(16) c 0 V(uv) (H(u)vv) > cv
2

2 1
This smooths everything down: G becomes C2 , and I is CI . One caa replace

subgradients by ordinary gradients everywhere, and just use Thcc r-M III.1 instead of

Theorem 111.2. The details are given in an earlier version of this paper (18]).

6;



II. THE CASE OF A HOMOGENEOUS HAMILTONIAN.

A - Main statement.

In this section, we shall deal with a particular case, which already contains the

whole difficulty. It is the case when the Hamilton H, still convex, is also positively

homogeneous of degree two. If certain estimates on H are satisfied, the corresponding

Hamiltonian equations will be shown to have at least m (1 < m < n) distinct periodic

trajectories on each energy surface. In Section IV, the same conclusion will be seen

to hold, with the same estimates, but without the homogeneity assumption.

ThormI.Le :l2n l+ eaC1
Theorem 1. Let H : -, + be a C convex ' :ction, positively homogeneous of

degree two, with an isolated zero at the origin:

(1) 0X , 0, Vu 1 0, H(Au) = X2H(u) > 0

Assume there exists constants s,7 and an integer m with:

(2) 0 < fi 2y and 1 < m < n

(3) Yu c I 
2

n
, .1,m.H2 < H(u) < 1u 1

2

where 7m is the projection defined by:
m

(4) i~(Xm ,...,.x .. n)= (xl...,xm 0 .,O,Pl,1...,Pm, 0 ... ,O)

1 m
Then there are at least m distinct periodic trajectories u ,....u of

Hamilton's equations (H) on the energy level i:

(5) U = 3!H' (u

(6) H (u (t)) = 1, all t C IR

(7) u (t + T.) = u (t), all t C IR
1

i
Moreover, T. is the minimal period of u , and satisfies the following estimate:

(8) r. < T. , 2s
- 

T

Let us first note that the assumption that the assumption on H will imply that

there is ;ome constant 0, namely the maximum value of H on the unit sphere,

such that:

2n 2(9) Vu F , H(u) _ -,lul,

"[ -7-



We now explain what we mean by trajectories. 'e say that two maps u 1 and

2n C1
u 2 :R IR 2n are equivalent if there exists some C diffeomorphism : P -1r s:

that uI = u2 0 . If u1  and u2 are equivalent solutions of the same autonomous

differential equation with a right-hand side continuous and nonvanishing along the

solutions (for instance equation (5), (6) - recall that u # 0 implies H' (u) Y ()

then 0(t) = t + t for some constant t and all t; if the right-hand side is

locally Lipschitzian, then two solutions having one common point are equivalent.

Aperiodic trajectory of system (H) is the equivalence class of a periodic solution of U

B - The function G.

The proof uses the Legendre transform G of the function H with respect to

u = (x,p). Since H is convex, G is defined by Fenchel's formula:

(10) G(v) = Sup!(u,v) - H(u)}
u

where from now Sup will stand briefly for Sup 2n
u uf1R

Let us recall a few standard facts of convex analysis (see (15], [21], [10]). The

function G :JR2n -.RU{+o} is convex and lower semi-continuous. It need not be

2ndifferentiable. Its subdifferential at a point v E P where G(v) < +- is the set

IG(v) defined by:

() 3G(v) = {u e R 2nG(w) - G(v) > (w - v,u) Vw}

It is a (possibly empty) closed convex set. It is compact and non-empty whenever

G is continuous at v. The multi-valued map v I ;G(v) has closed graph and is maxi-

mal monotone. Finally, we have Fenchel's reciprocity formulas:

(12) H(u) = Sup{(u,v) - G(v)}

v

(13) v = H' (u) - H(u) + G(v) - (v,u) = 0 - u e G(v).

In our particular case, G inherits from H a few more properties:

Lemma 1. The function G is positively homogeneous of degree two and satisfies th.

estimates:

(14) 2n 2
m

(15) Vv IR2 n (4w)- 1 1v 2 < G(v)

(16) V 2n (V) < (4) -l Mv<2

L ... .... .....-.-



Moreover, G is continuous and subdifferentiabl everywhere. The equ tions

(17) u E JG(v) and v =i' (u)

are equivalent, and they imply that, for some uniform constants and

(18) I!u I ' Jlvl

(19) duj 11ul

Proof. The first properties are obtained in a straight-forward manner from Fenchel's

formula (10). First homogeneity:

G (v) = Sup{(u,>v) - H(u).

u

= Sup(,,w, Av) H-Aw
w

= 2SupU(w,v) - H(w)}
w

= X 2(v)

Then condition (14):

G ( v) = Sup{(u, 1 v) - H(u)}m m
u

2/

<Sup{1 11U'v) -YIIT mull 2

u

(4y)l I mV 2

Next condition (15):

G(v) Sup{(u,v) - H(u)}
u

> Sup{(u,v) - 2

u

- (4,3) - lvfl

Finally condition (16) is obtained from condition (9). It implies immediately

2nthat G(v) 4-+o for every v C E. Since G is convex and finite-valued on I2

it has to be continuous, and hence subdifferentiable everywhere. The equivalence of

equations (17) is just Fenchel's reciprocity formula (13).

Since M is positively homogeneous of degree two, its derivative is positively

homogeneous of degree one: H' (v) = H' (v) for k 0. Equation (19) follows, with:

-9-



One gets inequality (18) in the same way, from tae equation 3G(v) = X)JG(v). It

yields

= Max{liwll w C 3G(u),(u) = 1,

a finite number, since the compact-valued mapping 3G is upper semi-continuous and the

level set G(u) = 1 is compact.

C - The functionals J and K

1 (,l2n) thsusaeEoal
We now consider in the Sobolev space H1 ORI ), the subspace F of all

functions u with period one and mean zero:

1 1
(20) E = Tv! €c L2(,,1; IR ), v(t)dt = 0 = f v(t)3t

0 0

It will be endowed with the interior product:

1
(21) (u'v) E = J d (t) ,(t) dt

0

and the corresponding Hilbertian structure. We shall identify the functions u E E

with their restrictions to [0,11. Note that the injection E 7L 
2 
(0,1; IR

2n
) is compact.

Every function v E E has a Fourier expansion which converges in E:

(t) 2iskt

(22) kv V 2Z

= O, V_k = vk f

Similarly, the Fourier expansion for vr in L 2(0,1; R
2n

) is given by:

2isikt
(23) v(t) = (2ipk) vk e

Using Plancherel's theorem, and denoting by If-It 2 the L 2-norm, we gqt:

(24) 11v12 =  y 1v 2k
2 k~

k90

Hence, using the fact that v0 = 0, the estimate:

(26) Vv C , [Ivll2 ' 2,r)-1112 ' 1!2

-10-



This estimate can be improved if there are no first-order term in the Fourier

expansion. If IVlI = 0, we have

(27) iivi1i 
:
= jVk

12

2k >2 v

(28) iv
2' = 4 2k2,Vk,2

k>2 

and hence:

(29) Vv E E . Ilv 1 0, Ivii2 < (4 )-111,1i2

Of course, the estimates (26) and (29) will also hold individually for each com-

ponent of v = (y,g). Note that the second estimate is sharper than the first by a

factor 2 from the point of view of functional analysis. It is this fact which will

enable us to distinguish between the functions which have non-vanishing first Fourier

coefficient (and hence have 1 as their minimal period), and the other ones. Loosely

speaking, we will separate the normal modes from their harmonics.

We now define two functionals J and K on E:

J(v) = f -(y(t),q(t))dt = f (y(t),4(t))dt
0 0

1 '1

(30) 1 ~ f (v (t) , oi t) )dt = f (ov (t) ~(t) dt
2 2

0M G(v (t),cT (t))dt

1

(31) - f G(-q (t))dt
0

The functional J is clearly a continuous quadratic form on E, and hence is C

To compute its gradient in E, we write it as a scalar product:
1

(32) J(v) = (v,Av)
E

where Av = u is the unique solution in E of the equation u -nv. The operator

A : E E is easily seen to be self-adjoint, so that:

(33) J' (v) = Av

-11-



Note that J takes on positive values as well as negative ones. Howevrr, u-in'g

inequality (26) we readily get an estimate for J:

(34) Ij(v) I L j ll2 1 v 2

The functional K : E -IRU{+1 } inherits variouc properties from the function ;

It is convex, non-negative, lower semi-continuous, positively homogeneous of degrce tw:..

It satisfies the following estimates (compare with (14) and (15)):

-12

(35) Vv e E , K(v) < (4Y) I EII 2

(36) Vv E E (4)1l1lvll 2 < K(v)

where v = (y,q) belongs to E if and only if:
m

Ym+l(t) Yn(t) = 0 = gm+l(t) ... = gn(t) = 0 it

Using condition (16), we get another estimate for G:

(38) Vv e E, K(v) <_ (4a)- 1 11v1 2 < +

Since K is lower semi-continuous, convex, and finite everywhere, it must be ccr,-

tinuous. It follows that 3K(v) 30 0 at every point v; this subdifferential is easi'.

computed:

Lemna 2. The subdifferential 3K(v) of K at v is the set of all w E E such that

there exists u
0 e R2n with:

0(39) -0 i(t) + u e 9G(- cr(t)) a.e.t.

2 ]2nProof. We define a closed subspace E' of L (0,Rl;~ n ) as follows:

1
(40) u e E' f u(t)dt = 0 .

0

Let F be the 2n-dimensional subspace of L2 spanned by constant vectors.

Clearly E' and F are orthogonal subspaces.

The Hilbert spaces E and E' are isometric, through v k ' restricted to

[0,11). Through this identification, the functional K gives rise to a functional

K' on E' defined by

-12-



12 n

(42) K"(u) f G(-Ou(t))dt Vu C L 2(0,;l;
0

The subdifferential of this functional in L
2 

is known to be (see [10])

(43) 3K"(u) = {w" f L 2w"(t) e o9G(-u(t)) p.p.

But K' is the restriction of K' to E'. Its subdifferential must be the pro-

2
jection on El of the subdifferential of K' in L

K(u) = {w' C ElauI f F : w' + u C (

= {w' f ElauI  F -ow' - ou I 6 CG(-Yu)

1 0
Going back to E, setting w' = w and -ou = u , we get the desired result.

D- The functional I

We now use J,K, and a constant a > 0 to define a new functional I on E:

(45) I(v) = J(v) + (K(v) + a)K(v)

The whole proof hinges on the particular choice of the constant a. It has to

satisfy the condition:

(46) < 2na < 2y

That such a constant exists is exactly assumption (2). The functional (K + a)K

is convex, non-negative and continuous, because K is. It follows that it is sub-

differentiable everywhere, although it need not be differentiable. We want to compute

3[(K + a)K] in terms of K.

Lemma 3. Let p : [0,+-) -3R be an increasing convex function, with 0(0) = 0.

Assume P is C on (0,-), with P'(t) > 0 for t > 0. Then r oK is continuous

and convex, with:

(47) K(v) i 0 (P o K)(v) = (P' o K(v))3K(v)

Proof. Take any u E DK(v). We have, for all w e E

o K(w) - P o K(v) > ' o K(v) [K(w) - K(v)]

o K(v)u,w - v)

Hence P' o K(v)u e )(,o K). We have proved that the right-hand side of equation

(47) is contained in the left-hand side. Now for the converse.

-13-
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Take any v where K(v) > 0, and any u f 5(P o K)(v). It will suffice to prove

that, for any direction w E, we have, for t > 0:

(49) K(v + tw) > K(v) + 1 (tw,u) + 0(t)-- ' . K(V)

The function t * K(v + tw) is continuous on the interval 10,t 0]. Choose to  so

small that K(v + tw) > 0 on this interval, and apply the mean value theorem to

(50) K(v + tw) - o K(v) = P' (Kt) [K(v + tw) - K(v)]

where Kt  is some number between K(v) and K(v + tw). Note that Kt - K(v) when

t - 0. Using this, and the definition of u, we get the desired result:

K(v + tw) - K(v) > (twu) + Et)

wpl- 1K(v)

with Kt) 1 1 (w,u) - 0 when t - 0t ' o K(v) 7 -

Setting ;(s) = s
2 

+ as, we get, for any v e E:

(52) [K + a)K] (v) = (2K(v) + a) K(v)

Now for the functional I itself. It is neither convex nor differentiable in

general. It satisfies the following estimate:

Lemma 4. There are constants cl,c 2 > 0 and k > 0 such that

(53) 
Vv e E, I(v) > c I + c2 !v I2

(54) the function v - I (v) + kf1v,12  is convex continuous.

Proof. Using the efinition (45) of I, and plugging in the estimates (34) and (36),

we get, for all v f E:

(55) 1(v) > 2 j + (a + (4B) 
1(I' [ t2 ) (46)1 1 •

Formula (53) follows by choosing cl and c2 > 0 such that

14il 2 -24c2

- t + (40) -2t
4 > c + C t Vt e I

To get relation (54) we take any k > (41) - 1. Then J(v) + kIVI112 is a quadratic

form, and it is positive definite by relation (34), so that it is a convex functional.

It follows that:

-14-



(57) INv) + kJ~vI1' =J(v) + kOv~) + ,(v)

is a convex functional. It is obviously continuous.

The subdifferential of I at v f E is defined to be the set:

(56) 51(v) = J' (v) + J[(K + a)K] (v)

= J' (v) + (2K(v) + a)flK(v)

The critical points of I are defined to be those points v f E where 0 c 
3
I(v).

Now J' is given by formula (33) and 3K by lemma 2. Putting the pieces together, we

see that v E E is a critical point of I if and only if there exists uo f IR
2
n such

that

(57) (2K(v) + al)v(t) + u E G(-o(t)) a.e.

We now proceed to find critical points of I and later on, we will relate them

to periodic trajectories of system (11).

F - Critical poins3 of I

This step of the argument uses a general result on functionals invariant by an

1
S -action. For the sake of clarity, we have postponed the proof of this result till

Section III, where it appears as Theorem 2.

Recall what is known about the functional I. It is everywhere finite and con-

tinuous, It is bounded from below and Iv) + kli-v
2  

is convex for some k 0. It

also satisfies the following condition of Palais-Smale type:

Lena 5. If (vk,Uk) are sequences in E , oith uk c 'I(vk), such that:

(58) Sup I(vk)
k

(59) uk -0 in E (i.e.: Juk 1-o)

th ,n there is a subsequence vk  which converges in E.
n

rroof. comparing condition (58) with estimate (53), we see that the sequence vk  is

bounded in F. It follows from condition (38) that the sequence K(v ) is bounded

in P.

The condition uk I(v k ) means that (see (56)):

(2Y(v k  + a)- uk - J' (v)) )K(v k

-15-



By Lemma 2, this means that there exists some constant u0 f 2n such that

(2K(v ) + a)- (v (t)-il (t)) + u EG(_c{k(t)) a.e.k k k k k

The sequences uk and vk are bounded in E, so that a and Vk are bounded

in L 2 . Because of estimate (18), the right-hand side of equation (61) is bounded in

L2 , and so are the v because of estimate (26). It follows that the sequence u kri

is bounded in 2n.

We now take subsequences so that:

(62) vk ' v weakly in E
n

(63) K(v k ) - 0 in IR
n

0 -0 2n
(64) uk , u in R

It follows that v v in L2; we already know that 6 0 in L This implies
k k
n

that the left-hand side of equation (61) converges in L2 towards

(65) w = (2o + a)-1v + u
0

But equation (61) can be inverted, using Fenchel's reciprocity formula (13), to

read:

(66) vk(t) = oH'[( 2
K(vk) + a) -l (vk (t) - 0(t)) + U10 a.e.

Now, because of estimate (19), the nonlinear map w - aH'w sends L 2(0,1; 2 n )

into itself. By a theorem of Krasnoselskii ([13]; see [10] for a shorter proof), it

follows that it is continuous. This enables us to pass to the limit in formula (66):

(67) k - a H' (w) in 12(0,l; MP)

This is the desired result. We can see also now that vk converges in E to
n

v so that 0 = K(v).

The time has now come to introduce the natural action of the group S = IR/7Z on

the Hilbert space E. To each e c S1 we associate the time translation L(P) : E

defined by:

(68) L(O)v : t - v(t + 9)

-16-



Note that this is a group action: L(0) is the identity, and L(81 + 62 ) is

L(6 )L () The map (6,v) - L(e)v is continuous on S × E. The maps L(O) are

linear isometries of E:

(69) Vv E E, IIL(e) 1E= 1VIIE

The functionals J and K, being integrals over one period, clearly are invariant

by this Sl-action. So is the functional I:

(70) I - L(O) = I, all e e S

Let 2 be the set of points where I < 0.

(71) {v E II(v) < 01

It is an open invariant subset of E, and does not contain the origin. It has

more over two very important properties with respect to the S -action: they are

crucial to our proof of Theorem 1, and this is where the two-sided inequality (46)

comes in.

Lemma 6. Take any v in Q . Then its first Fourier coefficient is non-zero:

(72) (V I vke 1 3 0
kj'O

Proof. Assume v, = 0. We then have 11v1I2 < (41T)-
1 ' II1 2, by estimate (29). Writing

this into the formula (30) for J, we get:

(7 3 ) L~)> - -1 1 1 1 _ (8 1') -1 11_ 112

Writing this into the definition (45) of I, and using estimate (36), we get:

(74) I(v) > J(v) + aK(V)

I- a112_- (8ar)-1 ll . + a(4 ) llyvi

This is non-negative, since a was chosen in formula (46) to be greater than

B/
2

T. Hence I(v) > 0, in contradiction with the assumption that v belongs to Q.

It follows from Lemma 6 that all functions v in Q have minimal period one:

they cannot be k -- periodic, for any integer k > 2. In other words, the group S

acts freely on n.

-17-



Lemma 7. There lies in 0 an invariant (2m - 1) sphere on which the action of S1

is the usual Hopf fibration.

Proof. Imbed the euclidian (2m - 1) sphere S2m- in

2 2
2m-1 + Tj i.

(75) Sm- l 
= en B Z7n x en n}

= 0 = for m + 1 < i I n

2m-1This is the unit sphere. Of course, rS -
, with r > 0, will be the sphere of

radius r.

With any (C,n) FRn x n , we associate a function V(E,n) = (Y( ,n),Q( ,n)) by

the formulas:

(76) Y( ,n) (t) = &cos 2irt + nsin 27rt

(77) Q(,) (t) = ncos 27rt -Csin 2 it

Note the relation:

Q(~,n)(t) = ,n) (t-

It follows that the linear map V :1R 2n- E is injective, so that r E = V(rS2 m- 1 )

is diffeomorphic to S -
. It follows also from relation (78) that r E is invariant.

More precisely, setting C = + in e cm, and writing equations (76) and (77) as
-2irt

V( )(t) = Ce , we get the relation:

-2i 7T(t+@) 1(79) L(e)V(C) (t) = e -  V e E S

(80) L(O)V( ) = V(e-2 ), y e C S

This means that the action of S on r E pulls back through v-1 as the action

Se-
2i on S 2m-l , the usual Hopf fibration.

We will now show that r > 0 can be chosen so small that r Z is contained in

2. This will conclude the proof.

Take any v e r E and compute I(v) = J(v) + (K(v) + a)K(v). We first compute

J(v) by plugging equations (76) and (77) in formula (30):
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1

(81) J(v) = f (271, sin 211t - 2-1 cos 2.'t,n cos 2,Tt - ( sin 2?t)dt
0

2 2- (i + I ) = - r

Since the components v, are identically zero for m + 1 i n, we can use

estimate (35):

(82) K(v) (4,) H, II = ) 2
- 'F (40 2

-l 2 2 2 -l 2
(4) (4 7)( F + 12) 2r

Hence an estimate for I(v):

2 1 2 -1 2
(83) I(v) - . (, 2 r a)(, .. r

-~ 4

Since a has been chosen in formula (4r,) to be strictly less than y/ , the

second-order term in (R3) is strictly neqotive, and takes precedence over the fourth-

order term near zero. It follows that I(v) for small -nough r 0 0, and hence

r 7 C , as desired.

We now apply Theorem 111.2 to the functional I. All the a-sumptions have been

checked, so the conclusion holds: contains at least m distinct Sl-orbits con-

sisting of critical points for I.

F. Periodic trajectories of (H).

The time has now come to return to the initial problem of finding p,,riodic

trajectories of Hamilton's equation () on the energy level H = 1. We first show

that we can associate with eac! critical point of I in a periodic solution of

Hamilton's equation.

Lemma 8. Let v ( L he a critical point of I in .Recall that there is some

0 2
constant u 1 12n such that:

(84) 12Y(v) + a) v(t) + u
l  C(--((t)) a.e.
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Set:

(85) w = a + 2K(v)

(86) p = K(v) - 
2

(87) u(t) = p(w -v(Wt) + u

Then u is a C1 periodic solution of equation (H):

(88) = OH' (u)

lying on the energy level 1:

(89) H(u(t)) = 1, all t

and with minimal period T:

(90) T s-i

(91) 8 - 1 < T < 2 r8

Proof. Formula (84) is just (57) rewritten. By Lemma 6, the function v has minimal

period 1. It is clear from its definition (87) that the function u will have

-1minimal period w = T. We now have to prove that it is indeed a solution of

Hamilton's equation, and to check relations (89) and (91).

Comparing (84) and (87), we have:

(92) P- 1u(t) E 9G(-o-r( t)) a.e.

Using Fenchel's reciprocity formula (13) or (17) , this becomes:

(93) -ov(wt) = H' (p-l u(t)) a.e.

We have seen in Lemma I that H' is positively homogeneous of degree one, so that

(93) becomes:

(94) -ap, v(wt) = H' (u(t)) a.e.

But it follows from formula (87) that Ci(t) = p.(t). Writing this into (94),

we get:

(95) -au(t) = oH' (u(t)) a.e.

Since H' is continuous, u ip, CI
, and is a classical solution to Hamilton's

equation (H). Let us find its energy level.
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since H is positively homogeneous of degree two, we have 2H(u) (u,H' (u))

(Euler's formula). Writing this into Fenchel's reciprocity formula (13), we get:

(96) H (u) = (u, H' (u) G Go H'(u) = 2H(u) - G o H'(u)

(97) H(u)=G oH Cu), all uc E

Applying this to formula (93), we get:

2 -
(98) H(u(t)) =p H(p ut)

Let h be the energy level: H(u(t)) = h for all t. Integrating the preceding

equation, we get:

-1

(99) h = G) f -(u(t))dt

0

-1

= WO 2 G(-Oihwt))dt
0

= 02 1 G(--d)d

0

= 0 K(v)=1

only estimate (95) is left. We start off by writing fromula (97) in a different

way:

(100) G Ho (u)=- (u ,H' (u)) all u c. ,2n
2

Comparing with equation (93) this yields:

(101) G(-o'3 'Gut)) = L (. -u(t) -"'(,,t))
2'

Using equation (87), this becomes:

1 -l 0
(102) G(-O-r(wt)) = T(. v ("t) + u ,,r(wt))

Integrating over one period, the constant disappears, and we are left with:

-1 -1

(103) w G c,-(ut'~it dt 1 (v (wt) ,- n (,t) dt
0 0

(104) K (v) = .J(v)
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Hence:

-1 K(v)T= u = J(v)

Using estimates (34) and (36), this implies that T > sTl The other inequality

(91) we get simply by writing:

(106) (2K(v) + a) a < 2I

We now prove that the m distinct SI-orbits of critical points for I which we

have found in 2 give rise to distinct periodic trajectories for the system (H) (we

refer to subsection A for what we mean by distinct trajectories).

Lemma 9. Let v1  and v 2  be two critical points of I in ., and let u I and u2

be the periodic solutions of (H) associated with v, and v2  by Lemma 8. If v1

and v2 belong to different Sl-orbits in E, then u and u2  describe different

trajectories in 
R2n.

2n
Proof. If u1  and u2  described the same trajectory in 2 , there would be some

t E M such that:

(107) 1(t 
= u 2(t + t0, all t

It follows that u and u2  have the same minimal period: T1 = T . Using

Lemma 8, we get w l= 2' then K(v ) K(v 2), then p 1 =p 2, then, by formula (93):

(108) -o 1 (t) = H' (lU I(t))

- 1
= H' 2 u2 (t + t ))

= -- ' 2 (t + t ) all t
2 0

Hence v1 (t) = v 2 (t + t0 ) for all t. This means that v1 = L(t 0 )v 2 , so that v1

and v2  belong to the same S -orbit in E.

This concludes the proof of Theorem 1: we have found m distinct critical orbits

of I in ., which, by Lemma 9, have to correspond to m distinct periodic

trajectories of (H) in P 
2 n

-22-
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3.!

III. S 1-ACTIONS AND INVARIANT FUNCTIONALS ON HILBERT SPACE.

In this section, we prove two abstract theorem; about critical points of func-

1
tionals invariant by an S -action. It is self-contained and can be read independently

of the rest of the paper. Its main result, Theorem 111.2, was used in the preceding

section to prove Theorem II.1.

Theorems III.1 and 111.2 differ only by the regularity assumptions on the func-

tional F, which is assumed to be C in Theorem 1, while in Theorem 2 we assume

there is some k 
" 
0 such that F(v) + k~lv !

2  
is a convex function of v. The proof

of Theorem i will be obtained by a topological argument of Liusternik-Schnirelman type,

and Theorem 2 will follow by a regularization argument.

Let us first set the stage. Throughout, E will be a Hilbert space on which the1I
group S acts through isometries. In other words, with every , c S

I
, we associate

a linear operator L(:,) c L(E) such that:

V S , Vu E E, 
I
L(

'
,)

u !,  
= ujl

L(0) = Id

1 2 L(01 1.2
)  
= L .I 2)

We will assume also that the map ( -,u) L()u is continuous on S 1 E. Recall

1
that a subset of E is invariant if L(G')u (: for all § t S and u c . We

1

say that S acts freely on if c A implies ,(,n)u y L(')u for all u

1 - Invariant C functions.

Our purpose in this subsection is to prove the following:

Theorem I. Let F : F -]P be a 0 function, bounded from below and satisfying con-

dition (C-): if un  is a soquence in E such that Sup F (u ) 0 and F' (un) n 0,

n
then un has a convergent subseque nce. Assume F is invariant:

(i) V S F L( ) F

and S act:; freely on the suhset:

-m
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If contains an invariant (2n - 1) sphere , arid - I

is the usual Hopf fibration, then there are at leact n S -Orli .

sisting of critical points of F. a

Note that condition (C-) is of Palais-Smale type. The :.tri-:t

Sup F(u ) 0 makes it easier to check and comes in handy in !ariou ; ,
n

[18]). Note also that the requirement that S acts freely on I.n - "

does not contain the origin. In particular, F(0) has to h< foSltiv<:

To prove this theorem, we need the cohomological index thcer-, ef - .

Rabinowitz. Let us just recall the relevant features and refor the r.adr ti. §

paper [11] for full details and proofs in the gen-ral case of a comraact : J

on E.

1
With every paracompact space A on which S acts freel'-, th.ey aeso7iat: a

integer, its index, with the following properties:

(1) Index ; = 0

1 + dim A
(2) 1 - Index A < 2 for A

{ Monotonicity: if there is an equivariant continuous

map ; : A - B, then Index A - Index B

(4) Subadditivity: Index (AUB) _ Index A + Index B{ Cnntinuity: if K is a closed invariant subset of A, thler, .:
(5)

closed invariant neighbourhood N of K with Index ' = Index

Note that the dimension formula (2) is misprinted in Section ef tle or.

paper. For the sake of completeness, we quote the definition of ndex A: i

greatest integer k such that f*( 
k - l ) does not vanish, where f i a 1a .

map of the fibre bundle A -- A/S
1 into the universal S -bundle TP', a iI

H 2 (CP ,Z) is the first universal Chern class. It follow,; from t
l
.

" -

definition that the index of S n -  with the usual S -action (Holf "

W now proceed to the study of the function F. It is C, :9 tI

is a continuous vector field on 1. However, it need not L !it, 'h :'

cannot integrate it. For this porpose, we will use a pseude-ira :n*, **"<

-24-



Definition 2. A vector field : E E is a pseudo-gradient for F if it is lo-all

Lipschitzian and, for all u E E:

(6) (F' (u) , I(u)) > lF' (u) 12

(7) 2 IF' (u) II_ II (u) 11

From now on, the arguments are standard, and can be found for instance in Palair,

(171 or Rabinowitz [181. We first state that there exists on . a pseudo-gradient,

equivariant with respect to S

Lemma 3. There is a vector field : E S satisfying conditions (6), (7) and

(8) ye C SI , ' o L(O) = L(e)

Proof. The existence of a pseudo-gradient w is proved in [17] or [18], using a

partition of unity. We then define a new vector field : E by:

(9) Vu e E, (u) = L (- ) (L(0)u)d. Cj d

Si Si1

We check successively conditions (6), (7) and (8), using the fact that the L(-)

are isometries, and that F is invariant, F(L(')u) = F(u). Differentiating with

respect to u, this yields F' (L(e)u) = L(O)F' (u) and hence IF' (L(0)u) = F' (u)

We have:

(F' (u), )(u)) = f (F' (u) ,L(-9) 4(L ()u) )d9

= f (L(-0)F' (L()u) ,LC-),(L(0)u) )d

- F (F' (L(e)u),)(L(e)u))d9

f F'2 Lu)u 1! T2
F'~~~ (L() )id) F'Cu

11 :(u) I, f j C-)) ,(L( )u) ide

= (L ( .)u) 'd- c

2 ( L()u) dK

C F' (u) C'

( 1- - LOA



We then give a deformation lemma, the proof of which can be found in the same

references. Here we denote by £2 the set of points u such that F(u) I c. It isc

a closed invariant subset of Q.

Lem. a 6. Take c < 0 and set K = {xIF' (x) = 0,F(x) = cl. It is a compact invariant

subset of £2. For any invariant neighbourhood N of K, there exists a constant

c > 0 and a continuous map:

(10) p : 0,i] ×' (£2 '.N) £2 \K
C+' -  

C+F

with the following properties:

(11) -0 (x) = x, all x , 'c+ \N

(12) 1;1o L(8) = L(O) o P I all 8 e S1

(13) c+E \ N ) C Qc

If K = €, the same statement holds with N =

Proof. Let and , be given, with -c F > 0. Consider the disjoint invariant

sets:

(14) A = {x E 2 1F(x) > c + n or F(x) < c - Tj

(15) B = tx f 'Ic - E I F(x) < c + c .

Define functions f : , and a : iR +- IR by:+

(16) f(u) = Idist(u,A) + dist(u,B)]-Idist(u,A)

1 if 0 , t _ 1
(17) t t = t t

t - I 
if t > 1

It follows from the definition that f is invariant. We now consider the vector

field V on K defined by:

(18) Vu) = -f( 0)'(I H(u) ) (u)

where :(u) is an equivariant pseudogradient for F.

The map : is simply the flow associated with the locally Lipschitzian vector

field V. It is shown in references [171 and (18], or in paper 14], that if ri is

chosen small enough, c is well-defined and sat' sties properties (11) and (13), as



well as a few more. Condition (12) follows readily from the fact that the vector field

is equivariant: V o L(O) = L(O) o V.

We are now all set for the proof of Theorem 1. We start by associating with each

integer i between 1 and n a family FI of subsets of 2:
1

(19) 1'. {B C .2[B is compact, invariant, Index B > i.

3

By assumption, contains a compact invariant subset E of index n. It follows

that the ., 1 i n, all are non-empty, since all contain E. We define:

(2)) ci =Inf Max F(u)1

SBfF.jue B

We have, for all i E fl,...,n}:

(21) 0 > Max P(u) > c. > Inf F(u) > -

u(E ue!

(22) c ci+1 C

The proof now proceeds in two steps:

Lemma 5. Each c. is a critical value of F.

Proof. Assume it is not. Apply Lemma 4 with K = P and c = c. : there is some E > 0I

and some map : satisfying conditions (11) to (13), with N = . Pick some B f F.
1

such that:

(23) Max F(u) < c. + e1
uEB

Consider 1 (B). It is a compact subset of ",, because 1 is continuous, and it

is invariant, because €I and B are equivariant. The group S
1 

acts freely on .l(B),

because it acts freely on .. It then follows from the monotonicity condition (3) that

Index i (B) > Index B, so that (B) also belongs to i. It follows from the defi-

nition (20) of c. that:
1

(24) Fa F(,I) C.

and from condition (12) that:

(25) 'ax ' ) - -
,J 0:() -

a clear cntradlictiorn.
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-i
If the ci are all distinct, the proof of Theorem 1 is complete: each F (c ) o.t..

oneofthe n desiredcriticalorbits. If some of the c. coincide, the following l
1

proves that there are infinitely many critical orbits, so that the theorem still .

Lemma 6. Assume c. = c., with i < j. Call this common value c, and set:I 3

(26) K = fu C Q IF(u) = c,F' (u) = 0

Then Index K > j - i + 1.

Proof. The condition (C-) implies that K is a compact invariant subset of . B'" t'r

continuity property (5), there is a closed invariant neighbourhood N of K -<itr. t'o

same index. Its interior N is still invariant, and by condition (3) or (4):

(27) Index K < Index N < Index N = Index K .

Let us now apply Lemma 4 to get some c > 0 and some map ; with the propert',?

(10) to (13). Pick some B e r. such that:
3

(28) Max F(u) < c + E .
uCB

In other words, B is compact, invariant, and B C 2 . Set C = B\N. By theC+

monotonicity and subadditivity properties (3) and (4) , we have:

Index B < Index (C U N)
(29)

< Index C + Index N

But C is compact, invariant, and condition (13) tells us that i (C) is con-

tained in S-. It follows from the definition (20) of c. that:

(30) Index iI(C) < i

Comparing inequalities (29) and (30), and remembering that B c F., we get:J

j < Index B < Index C + Index

< Index i (C) + Index K

" i + Index K .

If two of the c. coincide, the index of the corresponding K will be at la-t1

2, and by condition (2), its dimension will be at least 3. Since the Sl-orbits

have dimension 1, there must be an infinite number of them to fill up K. K. i

concludes the proof of Theorem 1.
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2 - Invariant non-smooth functions.
1

The space E, and the S -action L(U:) are as described in the beginning. As in

the preceding subsection, we shall give conditions for an invariant function F on E

to have n distinct critical points, but we shall no longer assume F to be smooth,

or even finite-value. Instead, we assume the following:

F : E -IR U {+-} is lower semi-continuous, not identically +-, and there
(31)2

exists some k > 0 such that G(v) = F(v) + kI v l 2  
is a convex function of v.

We then can define the subgradient 3G(v) of the function F at the point v:

(32) 3F(v) =G(v) - 2kv

where G stands for the subgradient of G in the sense of convex analysis (see (15],

[21], [10] for instance), that is:

(33) 3G(v) = fu E EIG(w) - G(v) > (w - v,u) Vw f E}

Note that DF(v) 4 if and only if DG(v) 91

From (32) and (33) it can be seen that, if u f 3F(v), then:

(34) F(w) - F(v) - (w - v,u) > -kl v-w 1
2  

Vw e E

which certainly implies that:

(35) F(W) - F(v) - (w - v,u) >o (w- vi!) Vw f E

Conversely, if u E E satisfies condition (35), it will imply that:

(36) G(w) - G(v) - (w - v,u + 2kv) >o (I1w-v!) Vwe E.

Since the function G is convex, this will imply that u + 2kv E ?G(v). Summing

up, we see that aF(v) is the set of vectors u e E which satisfy condition (35). It

follows that the subgradient 3F does not really depend on the particular choice of

k in the decomposition F(v) = G(v) - kilvil , as long as k is large enough for G

to be convex.

We shall also make use of another rule of calculus: if some functional F splits

as F = F1 + F , with F1 being C
2 

and F2 convex lower semi-continuous, and if

there is some k > 0 such that FT(v) + kId is positive ((efinite for all v C E,

then F satisfies condition (31) and

IF(v) = F (v) + ) F 2 (v), all v E.

-29-
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The proof is quite easy, using formula (35). If u f E belongs to F'(v) 4 F 2(v),

setting u2 = u - FT(v) F 2 (v) we get:

F(w) - F(v) - (u,w - v) = (F (w) - F (v) - (F (v), w-V)) + (F 2(w) - F 2(v) - (u2,w - v))

> (F"(w')(w - v), w - v) ,

for some w' on the line segment iv,w]. Using the assumption on F', we get the

estimate:

F(w) - f(v) - (u,w - v) > -k1w-v
2

Hence, by formula (35), u e WF(v). Conversely, if u c 9F(v), we claim that

u 2 = u - F'(u) belongs to 3F 2(v). Indeed, by formula (35), we have:

F(w) - F 2(v) - (w - v u2) 2 iF(w) - F(v) - (w - v,u)] - [F (W) - F (v) - (w - v, F' (u))]

= o (llw-vj)

The result follows as desired.

A critical point of F is a point v where:

(37) F(v) 4 0

If the function F is S -invariant, then so are the functions v - k lv1l
2

(because the L(i) are isometrics) and C (because it is the sum of the two preceding

ones). It follows that the critical points of F occur in Sl-orbits.

We now state the main result:

Theorem 2. Let F : E -. R U {+=} be a function, bounded from below, which satisfies

conditions (31) and

If (v ,u ) are sequences in E ×E such that Sup F(v ) <0, u f TF(v
n n n n n(C=) n

and un 0 0, then there is a subsequence v which converges.

k

Assume F is invariant:

(38) V ' S , F o LO) = F

and S
1 

acts freely on the subset:

(39) = ulF- (u) < o

If contains an invariant (2n - 1) sphere Y, and the action of S on

is the usual Hopf fibration, then there are at least n orbits in L consisting of

critical points of F. a
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Note that condition (C=) is of Palais-Smale type: it is the natural extension of

condition (C-) in the preceding subsection. It follows from the fact the subgradient

has closed graph as a multi-valued map from E to E that the limit of the subsequence

v has to be a ci'itical point. Note finally that the requirement that S
1 

actsnk

freely on 7 implies that F(0) > 0.

The proof of Theorem 2 relies on a regularization procedure following an earlier

idea of the second author. For an application of these ideas to Morse theory, the

interested reader is referred to [2].

Let - > 0 be given. We associate with F and e the new function F defined

by:

(40) F (v) = Inf i1w _ vn12+ F(w)}
wCE

In the case where F is convex, this is a classical regularization procedure, due

to Moreau And used systematically by Yosida (see 13]). Its use in the non-convex case

appears to be new.

-i
Lemma 7. Assume c > k and F satisfies condition (31). Then F is finite-valued,

differentiable everywhere, and F' is globally Lipschitzian. Moreover, F has the

following properties:

(41) Inf F(w) < F (v) < F(v), all v C E
wE

(42) F' (v) = 0- 0 f 3F(v)- F (v) = F(v)
1 2

(43) (v,F'v) > (1 - Ek)IF' (v) 
2

, Vv c E, u E DF v)
F -2

If F satisfies condition (C=), then F satisfies condition (C-). If F is

i
S -invariant, then so is F

The proof of Theorem 2 follows easily from this lemma. Indeed, choose C strictly

smaller than k
- 1

, and consider F . Since F satisfies (31), has the Palais-Smale

property (C=) and is invariant, F is C
1
, satisfies condition (C-) and is invariant.

Becau:;e of inequality (41), the set where F , 0 contains the set Q where

F 0, so that both contain . By Theorem 1, there are at least n distinct
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S
1-orbits in .Q consisting of critical points of F . But if v is aC

of F in 2.' we use relations (42) to get:

(44) 0 6 aF(v) and F(v) = F (v) - 0

So v is in fact a critical point of F and lies in .:. The n dintinrt

S -orbits just found consist of critical points of F and lie in :,or,. f"

Let us note that property (43) has not been used in this proof. It ' a ki,!.

pseudo-gradient property (compare with definition 2), and may be useful in. ,t:.

ations (for instance, to seek an analogue of the deformation Lemma 4 to give a - •

proof of Theorem 2, as in [2]).

We now proceed to the proof of Lemma 7. Throughout, k and L are fixed

-i
E_> k. Condition (31) holds for F.

Note first that F is finite everywhere. Indeed, let v0 be a point where

2 -i
F(v 0 ) < +-, and set w = v in the definition (40) of F . We get F (V) _ v-v-

0 0 E ~ ) *V

Taking w = v in the same formula (40), we get F < F. Moreover, we clearly '
- 
a--

(45) -11w _f -v
2 + F(v) > Inf F, all (v,w)

E

Using formula (40) again, we Cet F (v) > Inf F. The inequalities (41) are provc.
C

E
The rest of the proof is not so straightforward, and will require several steps.

Step 1: there is a map # : E - E such that:

(46) I1,(v I ) - (v 2 ) 11< (1 - ek)- 1v1 - v 2 11, all (vlv 2 )

(47) F(dv)) F (v) - 1 1v _-(v) 112E

(48) (v - (v)) e aF(p(v))
C

Proof. With any v f E, we associate the function G : E IR U { +o defined by:

(49) G (w) 1v - wi12 + F(w)v

-l
Because of assumption (31) on F, and the condition c > k, the function (

is strictly convex and lower semi-continuous. Moreover, we have

(50) G (w) -l1v - wl 2 + Inf F
-32E
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It follows that there is a unique point 4(v) e E where G v attains its minimum:

(1) - P(v) 12 + F(C(v)) = Inf G (w)
wL vwE

Because of formula (40), the right-hand side of formula (51) is just FC (v).

Relation (47) follows.

The point O(v) can also be characterized as the unique solution of 0 E 4G (w).~V
This can also be written 0 f 2(w - v) r - + AF(w), which yields relation (48). Writing

formula (32) for aF, we get:

(52) 0 f 2(w - v)
- 

- 2kw + G(w)

Let D(A) be the set of points w where 3G(w) , and defined a (multi-valued)

map A : D(A) *E by:

(53) A(w) = 2(c
- 

- k)w + G(w)

Now 3G is a maximal monotone operator (see [3)) because it is the subgradient of

a l.s.c. convex function. It is a standard fact from the theory that if B is maximal

monotone and X is strictly positive, then XI + B is onto, and its inverse satisfies

-3.
a global Lipschitz condition with constant X It follows immediately that A is

onto and A E - D(A) is Lipschitzian with constant (E - ki 2

We now rewrite equation (52) as:

(54) 2vp- I = A(w) for w =q(v)

It follows that (v) A- I(2vE-), so that is Lipschitzian with constant

I(C - k) = (I - kE) -
. This is relation (46).

Step 2. F is everywhere differentiable, F' is globally Lipschitz, and

condition (42) is satisfied.

Proof. Pick any two points u and v in E. From the definition (40) of F. , we

have:

(55) F (u) < Iju - P(v)l j2+ Fp(v))E - C

Using equation (47), this becomes:

2 _1v v)12, F-l(56) F (u) - F (v) < lu- p(v)fl -jv - i(v)! )J
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Performing some algebra, we get from this:

(57) F (u) - F (v) - 2(v - (v),u - v)E - 1 £lu - v1i E-

Exchanging the roles of u and v, we also have:

(58) F (v) - F (u) - 2(u - O(u),v - u)
-1 <Ilu - vl,2

E-1

Using the Lipschitz condition (46), we have:

(59) (u - - v + Iv),u - v) I < Wflu- vl1
2

with v = 1 + (I - £k)
-I  

It follows immediately that:

(60) -(u - (u),v - u) > -(v - 0 (v),v - u) - Iu- v11
2

Writing this into inequality (58) yields:

(61) F (v) - F (u) - 2(v - '(v),v - u) < ( + -1) lu
- 
vii

2

Let us now write inequalities (57) and (61) together:

(62) IF(u) - F (v) - 2(v - (v),u - v) E 1 1 < (, + :-l)IIu- vi1
2

This simply means that F is differentiable at the point v, with:

(63) F' (v) = 2(v - O(v)) -

a Lipschitz map from E to itself, as announced. Now for condition (42).

By formula (63), F' (v) = 0 if and only if v = O(v). By formula (47), this meansC

exactly that F(v) = F (v). By formula (48), this also implies that 0 E F(v).
F

It only remains to prove that 0 E 4F(v) implies that F' (v) = 0. Using definitionC

(32), 0 f .F(v) means that 0 f -2kv + 9G(v). By formula (53), this can also be

written 2- v C A(v), or v = A (2E v). But the right-hand side is just i(v), by

the definition (54) of , and the result follows from formula (6A).

Step 3. Condition (43) is satisfied.

Proof. Pick any u ( 3F(v). By formula (34):

2(64) F(,,(v)) - (j(v) - v,u) + kii,(v)- vi F(v)

Uisinq equation (47), this becomes:

(65) F (v) + (k - F-)Ii(v)-v i 2  
+ (v - (v),u) > F(v)
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Since F < F, this implies that:

(66) (v - P(v),u) > (C- k)lii(v) -v 2

Using v - (v) = cF' (v)/2, equation (63), this yields
2

(67) (F' (v),u) > (
-1  k) L F'I (v) 112

2 4 c

Simplifying throughout, we get condition (63).

Step 4. If F satisfies condition (C=), then F satisfies condition (C-).C

Proof. Let v be a sequence in E such that:
n

(68) F(v ) < -a 0 0, all n
n -

(69) F' (v) - 0 when n -
c n

We want to show that there is a subsequence v which converges in E. Setnk

wn = ' (vn ) and un = 2(v - w )E 
-
1 Using formula (47), we have:

(70) F(w ) < F(v ) < -a 0 0, all n.
n - n

Using formula (48), we also have:

(71) un c F(w ), all n
n

Finally, from formulas (63) and (68) we get:

(72) u = F'(v) - 0
n c n

Since the function F satisfies condition (C=-), we conclude from (70), (71) and

(72) that the sequence wn has a convergent subsequence w . But:n nk

C

(73) v - w - unk 0,
n k n k 2 nk- k

so that the sequence v itself converges. Hence the result.nk

1
Step 5. If F is S -invariant, then so is F .C

Proof: pick any f S
1 

and v E E. Recall the definition (40) of F

(74) F (L(-i)v) = Inf 1 w - L()vi
2 + F(w)
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Since L(O) is invertible, we can set w =L(G)u, and the right-hand x3

becomes:

F,(L,(e)v) = Inf IIL(O)u -L(e)v 112 + F(L(O)u)~
ue E

But L(6) is an isometry and F is invariant. The desired result follow5:

(76) F E (L(e)v) =Inf ! IIu -V11
2 + F(u)}

uCE

F (v)

LC
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IV. THE GENERAL CASE.

We now have to show how to go beyond the case where the Hamiltonian H is rosi-

tively homogeneous of degree two. This is done by using a trick which we learned fron

Rabinowitz, but which seems to be classical in Hamiltonian mechanics.

The fact is that the trajectories of Hamilton's equations u = ;H' (u) on the

energy surface S defined by H(u) = h depend only on S and not on H. More re-

cisely, if another Hamiltonian system also has S as a particular energy surface, it

will have the same trajectories as the preceding one on that surface S. The solutions

themselves, however, may not be the same for both systems, since the same trajectories

may be described with different speeds all along the path.

We now substantiate these statements in the case of a convex energy surface, which

is the only one we are interested in. We begin by giving a few classical definitions

in convex analysis (see [211).

Definition 1. Let C be a closed convex subset of I
2 n  

containing the origin. Its

gauge is the function J : r
2 n 

- I U f+-} defined by:

(1) J(u) = Inf{f > Olu e C} .

It is well-known that J is a lower semi-continuous convex function. If the set

C is bounded, J(u) = 0 if and only if u = 0. If its interior contains the

origin, J is finite everywhere, and hence continuous. Moreover, J is positively

homogeneous of degree one, and C is exactly the set of points where J _ 1:

(2) V _ 0, J(u) = XJ(u)

(3) u C C- J (u) < 1 .

Definition 2. Let C be a closed convex subset of R 
2 n

, and u a point in C. Th0

normal cone to C at u is the set:

(4) Nc (u) = {w E F 2n I (w,v - u) . 0 Vv C C

It is clear that Nc (u) is a closed convex cone, and that NC (u) = O if only

u belongs to the interior C.
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Let us assume that 0 e C, and denote by S the boundary of C. or any point

u in S, the subdifferential 4J(u) of the gauge is a convex, com:act, non-emipty

subset of IR 
2n

, not containing 0, and the following relation holds:

(5) Yu ( S, N (u) = U ,J(u)

If the normal cone Nc (u) reduced to a half-line, .J(u) car. !)- seen to be a

singleton:

(N (u) =e 3+ with 'I e ) - J) = (e

2n,
Definition 3. Let C be a closed convex subset of P , with interior C , and

boundary S. We shall say that it is C
1 

if, for every u f S, the normal cone Nc(u)

reduces to a half-line.

If C is C
1 

bounded and 0 e C, then 7J(u) is a singleton for every u e S.

Since J is positively homogeneous of degree one, 3J(Xu) = 3J(u) for all X > 0,

so that 3J(v) will be a singleton for all v lying in R 2n\{0. It follows that the

function J is C
1 

on the (open) region where it is non-zero. In other words, J is

1
C on a neighbourhood of S, which enables us to consider the Hamiltonian system

u = -J(u) and its trajectories on S.

2n1
Proposition 4. Let C CIR be closed, convex, bounded and C

I
, with 0 in its

interior. Let T' be some neighbourhood of S and H : U - S a C
1 

function such

that, for some constant h C l:

(7) S = TuJH(u) = h .

Assume that H' (u)-n (u) 0 for all u S, where n (u) is the exterior normalc c

vector to C at u (the unit vector in N (u)). Then the Hamiltonian systems:c

(8) u= J'(u)

('9) = ,'H' (u)

.,av the same trajectories on S.
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Let HI and H2 be two Hamiltonians consta,.- on S and satisfying:

(10) H. (u).n (u) 0 all u i S, i = 1,2
1 C

We shall show that Hamiltonian systems (HI ) and (H2 ) have the same trajectories on

S. The proposition will follow by taking H1 = H and H - J.
2

The two Hamiltonians H and H being constant on S with nonvanishing gradients
1 H2

(H' (u) # 0 for all u e S, i = 1,2) there exists a continuous function a : S -JR
1 +

such that

(11) H' (u) = a (u)Hi (u) Vu f S

(12) 0 < :cc < 0(u) < 0e 1 u f S

Let u be a trajectory of (H1 ) on the energy level S. From the definition of a

trajectory (see II.A) this means that u is the equivalence class of a solution u1  of

(H1 ) on S. Let : :R -.R be the C diffeomorphism defined by

s

(13) (s) = f dt

0 C (u (t))
-01

and let u2 = uW o - have for all s E JR

(14) 2 
S )  u (

, 
1 (s ) )  -i

€' (4 (s))

2 11 S 1 )=H (uI ( S) Is ))a (u ('Pl (s ))

= 1H (u (s))
2

so that u2  is a solution of the Hamiltonian system (H2) on S, and also belongs to

-1
the same equivalence class u as u1  (because u2 = uI  1 , see II.A). So u is

trajectory for (H ) on S.
2

We have seen that any trajectory of the Hamiltonian system (H1) is a trajectory

of the Hamiltonian system (H2 ). Changing the roles of (H1) and (H2 ) we get that

the trajectories of (HI ) and (H 2 ) on S are the same.

We can also see from the proof that a periodic trajectory of (H1 ) on S is a

periodic trajectory of (H ) on S.
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Hence the definition:

Definition 5. Let C CJR2n be a C1  convex compact set, with non-empt' interiur.

0

Let S be its boundary, and let u0  be any point in its interior: u c s . 7.t

be the gauge of the translate C - u We define Hamiltonian trajectorios or .

the trajectories of the differential system:

(16) d(t) = oJ' (u(t) + uO ) on S

By the preceding considerations, this definition does not depend on th- r rti-.1
0

choice of u in C\S, and any other Hamiltonian H with non-vanishing gradienrt

yield the same trajectories on S.

We are now in a position to state the main result of this paper:

Theorem 1. Let C be a C1  convex compact subset of e J]R with non-empty int !%r.

Let S be its boundary. Assume there is an m-dimensional subspace F of Jn , a :.O:°'

0
u in C\S, and a constant r > 0 such that:

(17) Yu E s, flu - u1 > r

(18) Yu C s, 11 TF(u - u 0)f r

where :R 2n  F x F is the orthogonal projection.

Then there are at least m distinct periodic Hamiltonian trajectories on S.

Proof. Let A be a rotation in Jn which brings the linear subspace

Xm+l =... = x = 0 onto F. Then the translation u - u + u0  and the rotationn

A x A in Fn n bring the general situation to the case where:

0(19) u =0

FxF={uC I 2nu ... =U = 0 in " .
Um+l == n

Since these transformations are canonical, i.e. they preserve the Hamiltonian

character of equations, we can assume that (19) and (20), so PF is just (see II-4 .m

Now consider the Hamiltonian:

(21) H(u) = [J(u)]
2

with J the gauge of C. It is convex, C , positively homogeneous of deqre two, ',i-

an isolated zero at the origin. It follows that:
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* 2n -1/2(22) Yu e R
n

, H(u) u E S

Conditions (17) and (18) now become:

(23) Vu e IR2n, (lu IH(u)-1/2 , r

(24) Vu f I
2

n
, 

IfnmU II< rv2

This can be made more precise, using the compactness of S. Define:

(26) = Max{IluI - 2 1u fS < r- 2

-2(27) y = Mn 1 1 .~u11- 1 u s Si > r__

We have 0 < B < 2y, and yIIn mU11 2 < H(u) < s1u1l 2 . All the assumptions of

Theorem II1 are satisfied. Then so is the conclusion: there are at least m distinct

periodic trajectories of Ci = OH' (u) on S. These are the m distinct periodic

Hamiltonian trajectories we were looking for.

The assumptions (17) and (18) can be stated geometrically as follows. Let B be

0the closed ball of center u and radius r, and let B be its intersection with
F

F - F. Then what is assumed is that S lies entirely between the ball B and the

cylinder with basis Bv2 and generatrices orthogonal to F x F. The most interesting

n
case is when m = n, which means F = In

Theorem 2. Let C be a C
1 

compact convex subset of ]R 2 n  
with interior C '

0
and boundary S. Assume some closed ball B(u ;r) can be found with:

(28) B(u 0 
;r) C C CB(u0

;r,2)

Then there are at least n distinct periodic Hamiltonian trajectories on S.

A striking feature of condition (28) is that it is invariant by isometries - but

certainly not by canonical transformations, even linear ones. Of course, the conclusion

itself, the existence of n distinct periodic Hamiltonia trajectories, will hold for

any compact hypersurface S C 2 which can be brought to be the boundary of a convex

set C satisfying (28) by a canonical transformation. We have been unable to

characterize such hypersurfaces; see Weinstein ((261) for more light on this problem.
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We conclude by indicating that our global result, and Weinstein's local theorem

([24]) have peculiar features, which make them irreducible to each other: the

1
Hamiltonians we are dealing with are C , and have to satisfy a geometric condition

(28), whereas Weinstein has no such condition, but requires the Hamiltonian to be C

This is more significant that it might seem. We could, for instance, try to prove

directly Theorem II.1 using Weinstein's theorem: since the Hamiltonian involved is

positively homogeneous of degree two, periodic trajectories on small energy levels can

be transported by homothety to any prescribed energy level. In other words, the global

problem follows from the local one. Alas, in this particular case, the Hamiltonian is

not C
2 

at the origin! Indeed, it is C
2 

if and only if it is exactly quadratic, so

that we fall back on the linear case.

Conversely, our result will prove that there are n periodic orbits on all small
2

energy levels, provided the Hamiltonian H is C and w n 2wl, where the + iwk,

s I k , n, are the eigenvalues of oH"(0), and 0 < w, < wk < w . Indeed, it is well

known that one can find a linear and canonical change of variables which brings H"(0)

to the form:

n L. S2 2
(29) (H"(O)u,u) = [ -- (xi + pi=l

One can then modify H outside some neighbourhood of the origin so that it becomes

convex and satisfies estimate (2) of Section II. The result we get in this way is weaker

than Weinstein's theorem, which lies no requirement on the wk . Note, however, that our

condition, w 1 2 , is not of the traditional "non-resonance" type: we could welln 1

have w. = k for some j and k. In other words, this approach is not deterred by

"small divisors" problems.
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